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ABSTRACT 

We study oscillations in the discontinuous dynamic system with time delay 

x(t)  = - s i g n  x( t  - 1) + F(x ( t ) ,  t), t > O. 

This is a typical model of relay feedback with delay. It is known that  

stable modes in this system have a bounded oscillation frequency. Here 

we consider transient processes and obtain the following result: under 

some restrictions on F ,  the average oscillation frequency of any solution 

becomes finite after a period of time, i.e. super-high-frequency oscillations 

(with infinite frequency) exist only in a finite time interval. Moreover, we 

give an effective upper  bound on the length of this interval. 

In troduct ion  

It is fruitful for many control problems to use relay control algorithms that yield 

sliding modes, i.e. a special kind of motion on a surface of discontinuity [AS, F, 

U]. One of the unavoidable difficulties in realizing such algorithms is the time 

delay, which is always present in real systems. It results in auto-oscillations [H, 

KN] and it does not allow one to design an ideal sliding mode. Here we study 

the system 

(0.1) 2(t) = - s i g n x ( t -  1 ) +  F(x( t ) , t ) ,  t >_ O, 

where 

(0.2) F E C2(~2), IF(x,t)l  < p < l, 
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containing simultaneously a discontinuous element and a (relatively) big time 

delay. This is a model of control when the minimal information is available, that 

is, only the sign of the output with time delay is known (see, for example, [CH]). 

First of all, note that  qualitative phenomena in the behavior of system (0.1) 

cannot be reduced to those for undelayed systems. For example, it is easy to see 

that any solution of the system 

2 ( t ) - - - s i g n x ( t ) + F ( x ( t ) , t ) ,  t >_O, 

F C C~(]~2), IF(x,t)l <_ p < l, 

vanishes identically after a period of time, whereas any solution to (0.1), (0.2) 

oscillates around the zero level. 

Systems with a (relatively) big time delay, of type 

2(t) = f(x(t), x ( t -  1)), 

arise in natural sciences, and are studied in many interesting cases [CW, MP, 

MPN1, MPN2, P, S, W1, W2]. Among their characteristic features we mention: 

(1) the average oscillation frequency on the delay interval determines mainly 

the behavior of a solution, (2) there exist infinitely many periodic solutions, 

or solutions with constant frequency, in the case of discontinuous nonlinearity 

[MPN1, e], (3) solutions with a non-zero frequency are unstable [MP, W1]. We 

illustrate this by the following example described in detail in [SFF2, SFF3]; it is 

a particular case of the system considered in [P]. The simplest equation of type 

(0.1), 

(0.3) J:(t) = - sign x(t - 1), 

has a countable set of periodic solutions go, g1,..., with the periods Tn = 

4/(4n + 1), n = 0,1 .... : 

~ t ,  - l < t < l ,  
go(t)= [ .2_t ,  l < t < 3 ,  go(t+4k)=go(t),  k c Z ,  

1 
gn( t ) -  4n+lgo((4n+l) t ) ,  tEN ,  

and any other solution with a finite frequency coincides with one of the above 

periodic solutions (up to shifts along the t-axis) after a period of time (see [SFF2, 

SFF3]). In the general case, solutions of (0.1) have similar properties. 
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On the other hand, the problems of infinite frequency oscillations and of the 

duration of the transient before finite frequency oscillations are not yet studied. 

These problems are of interest, because the remote control algorithms related 

to (0.1) start working only when we have a finite oscillation frequency [SFF1, 

SFF2]. The aim of the present paper is to treat these problems. Our main result 

is: under some restrictions on F, any solution of (0.1) has a finite oscillation 

frequency after some (effectively bounded from above) period of time. 

Now let us give precise definitions and statements. It is clear that  under 

condition (0.2), any Cauchy problem 

x ( t )  = t e [-1;0], e c[-1;0],  

for (0.1) has a unique continuous solution x~(t), t E [-1; oo). The main discrete 

characteristic of a solution is the following frequency function (see [MP, MPN2]). 

Let 

Z~ = {t >_ -1: x~(t) = 0}. 

Under condition (0.2), Z# is, obviously, unbounded. The function 

[0, oo) N u (0} u {oo}, 

u÷(t) = card(Z~ n (t*; t* - 1)), t* = max{~- < t: x~(T) = 0}, 

is called the f r equency  of the solution x~(t), Similarly to [MP, MPN2], the 

basic property of this characteristic is described by 

LEMMA 0.4: For any ~ E C[-1;  0] the function ~,~ does not increase. 

Proof: tf tl < t2, t l , t2 E Z +, then, according to Rolle's Theorem and (0.1), 

(0.2), there exists ~ E (tl - 1; t2 - 1) I"1 Z~. Therefore 

card (Z~ A (tl - 1; t2 - 1)) _> card (Z + n (tl; t2)) + 1, 

hence 
v~(tl) = card (Z~ r~ (tl - 1; tl)) 

_> card (Z~ M (t2 - 1; t2)) = v~(t2). I 

The meaning of this is that  the frequency of any solution becomes constant after 

a period of time. A priori, this limit frequency may be either finite or infinite. 

According to Lemma 0.4, in the latter case a solution must have the infinite 

frequency from the beginning (we call these solutions super-high-frequency steady 

modes - -  SHFSM). Our main result is the absence of SHFSM, and an estimate 

of the super-high-frequency oscillation interval for any solution. 



202 

THEOREM 0.5:  

conditions 
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There exist posit ive functions dl, d2 E C ( - 1 ;  1) such that  under 

F ( x , t ) = p o + x f ( x , t ) ,  l P o [ < l ,  f E C I ( X : ) ,  

max(If(x,  t)[, ff (x, t)l, I£(x, t)[} < d (po), 
any solution x~( t )  with ~ ~ 0 has a finite frequency u~(t) for 

d2(po) 
(0.7) t ~__ 64 -[- 1, 

where 5 is the max imal  length o f  a connected component  of the set 

[-1; 0] - ~ - 1 ( 0 ) .  In the case ~ =_ 0 we have: (i) x~ - 0 when Po = O, 

(ii) uv(t)  = 0 for t >_ 1 when po ~ O. 

Explicit formulae for dl, d2 can be deduced from the proof. Here we give them 

for the following important particular case: 

THEOREM 0.8: I f  F ( x , t )  - O, then d: - 1. I f  F ( x , t )  = Po ~ O, then 

where 
A = ( l + p 0 ) / 2 ,  # = ( 1 - p o ) / 2 ,  

/?(1 a(A, #) = - - 16A2# 2 

Let us add some comments. We note that the study of finite frequency oscilla- 

tions is reduced to problems on diffeomorphisms of a standard finite-dimensional 

simplex (see [P], or [SFF2, SFFal with application to system (0.1)), whereas 

in the case of infinite frequency we have to deal with operators on the infinite- 

dimensional symplex. Namely, to a solution we assign an element of the infinite 

dimensional simplex E - -  the set of lengths of fixed sign intervals on a unit seg- 

ment, and describe the evolution of this set. It turns out that  the shift operator 

on E determined by equation (0.1) is, in a sense, a contraction with respect to 

a certain norm. Another interpretation of this problem is a random walk on 

the line, and the question is whether it is ergodic (for example, equation (0.3) 

generates the random walk with the constant probability 1/2 of moving left or 

right at each integral point). 

Let us add also that  conditions (0.6) are, apparently, not necessary, as far 

as we are interested only in the non-existence of SHFSM. Let us formulate the 

following 
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CONJECTURE 0.9: Let F ( x , t )  = F(x)  and F satisfy (0.2). I f  F(O) ~ O, then 

there are no SHFSM. I f  F(O) = O, then the only one SHFSM is x(t)  - O. 

1. P l a n  o f  t h e  p r o o f  

1.1 MAIN IDEA. We argue by contradiction.  First, we introduce some "norm" 

in the set of closed subsets of a segment, and then we s tudy  its evolution for the 

sequence Z~ N In; n + 1], n > 0. It  turns  out that ,  under conditions of Theorem 

0.5, for any vir tual  SHFSM this norm tends to zero as n decreases. On the 

other  hand,  in the initial segment this norm is positive. From tha t  we deduce 

the non-existence of SHFSM and derive an upper  bound  on the interval with 

super-high-frequency oscillations. 

First we consider the case F - P0. Then  we reduce the case F ~ coast  to 

the first one by a change of coordinates,  which straightens the trajectories of the 

equations 

~ : = l + F ( x , t ) ,  ~ = - l + F ( x , t )  

and t ransforms the initial equat ion into 

(1.1.1) :i:(t) = - s ignx( t  - 1 - x(t)2z(x(t) ,  t)) + Po. 

This equat ion with a variable delay is t reated in the same way as for F -= P0. 

1.2 THE NORM OF A CLOSED SUBSET OF A SEGMENT AND S H F S M .  Let x~ ~ 0 

be a $HFSM. Let I~ be the set of isolated points in Z~. Pu t  P~ = Z~ - I~. 

In this s i tuat ion P~ is non-empty  and unbounded.  Let (C~o;/3o) be a connected 

component  of [0; oc) - P~. Then, by (0.2), 

(C~o + 1;/~o + 1) A P~o = O 

and therefore (a0 + 1; J30 + 1) is contained in some connected component  (c~1; 131) 

of [0; oo) - P~, and so on. Thus,  we obta in  a sequence of connected components  

of the set [0; c~) - P~: 

(O~n; ~n) ~ (O/n--1 "}- 1; fin--1 + 1), n > 1. 

L e m m a  0.4 implies 

(1.2.1) l i m  (~n - c~,~) = A _< 1. 
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Let us denote 

a = lim (an - n ) ,  /3 = 

It is easy to see that 

hence 

Definition 1.2.2: 

lira ( / 3 ~  - n ) .  

n > k ,  

a + k , / 3 + k  c P~, k > 0 .  

We define 74 to be the set of pairs (R, v), where R is a closed 

subset of [a;/3] containing a,/3, and v: [a,/3] ~ {0; 1; -1} is equal to 0 on R, equal 

to 4-1 on [a;/3] "- R and is locally constant in [a;/3] \ R. By I (R)  we denote the 

set of isolated points in R \{a; /3},  and put P(R)  = R \ I (R) .  | 

LEMMA-DEFINITION 1.2.3: For any (R, v) • 7¢ and k >_ 1 there can be found a 

pair ( R', u') • 7¢ such that there exists x( t) e C[a;/3] satisfying 

(1.2.4) ~(t) = - . ' ( t )  + F(x( t ) ,  t + k), t • [~; Z], 

(1.2.5) signx(t) = v(t), t C [a;/3]. 

The set of such pairs (R p, v') we denote by Ilk(R, v). 

Proof: We shall construct a shift operator Ek: T¢ --~ T/and show that  (R', u p) = 

Ek(R, v) is the required pair. Define the function x(t) • C[a;/3] by: 

(i) x(t)  = O, t • R, 

(ii) on each interval (tl;t2) C [ a ; 3 ] \ R ,  t l , t2 • R, v(t) = e e {+l},  t • 

(tl; t2), there exists a solution xl( t )  of the Cauchy problem 

~=c+F(x,t+k), x ( t l )  --- 0, 

and a solution x2(t) of the Cauchy problem 

= - ~  + F ( x ,  t + k),  x( t~)  = o. 

One of Xl and x2 increases and the other decreases. Therefore, there exists 

a unique 0 e (tl ,t2), with xl(O) = x2(0). Put 

x ( t ) =  ~xl ( t ) '  t l_<t_<0,  
[ x2(t), O < t < t 2 .  

Evidently, x(t)  satisfies (1.2.5). Now put 

u'(t) = { 0, if t E P (R)  or 2(t) does not exist, 

F(x( t ) ,  t + k) - :bit), otherwise. 

Finally, we define R p = (vP)-l(0). It is easy to verify that (1.2.4) holds as well. 
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Definition 1.2.6: For any (R, v) q TO, define IIR, v l~  to be the maximal length 

of a connected component of [a; ~3] \ R, and introduce 

IIR, vii = V/ ,  ~--~.(1') 2 + A ~-~(/ , , )2  

where l' (resp. l") runs through the lengths of all connected components of 

[a ;~3] \R with u(t) > 0 (resp. v(t) < 0), A = (1 + p o ) / 2 , #  = ( 1 - p o ) / 2 .  

Obviously, 

(1.2.7) IIR' vil°~ -< (1 + ]p0[) ' IIR' vll" I 

Our goal is to prove 

LEMMA 1.2.8: There exist positive functions dl, So E C( -1 ;  1) such that, under 

conditions (0.6), for any sequence 

(R, . )  • 7e, (Rk, .k)  • rIk(R, . ) ,  

(Ri, vi) • Hi(Ri+l, v~+l), i = 1 , . . . ,  k - 1, 
(1.2.9) 

the inequality 

(1.2.10) IIR,,-1]I ~ < So(po_A) 
- x /~+ 1 

holds. 

Let us deduce Theorem 0.8 from this. Indeed, assume that x~(t) is a SHFSM. 

It defines the sequence (1.2.9), where 

R = [~;~] n {t: x~(t + k) = 0}, 

Rm = [a;~3] M {t: x~(t  + m -  1) = 0}, m = 1 , . . . , k ,  

v(t) = signx~(t + k), Vm(t) = signx~(t + m--  1), t E [a;3], m = 1 , . . . , k .  

According to Lemma-Definition 1.2.3, this sequence satisfies the conditions of 

Lemma 1.2.8. Hence, for the set R1 -- [a; ~3] A x~ol(0), we have (1.2.10) with an 

arbitrary k, and the latter implies that 

x~(t)  =_ o, t • [~; ~], 

which contradicts the initial assumption. 

On the other hand, the same argument, (1.2.7) and (1.2.10) yield inequality 

(0.7) with 

(2S0(Po)  2 
d2(Po) = l + [ p 0 [ ]  

The proof of Lemma 1.2.8 is presented below. 
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2. P re l imina r i e s  

P R O P O S I T I O N  2.1: I f  positive numbers al,  a2, . . ,  satisfy 

3 (2.2) a n < a n - l - O a n _  1, n >  1, 0 = c o n s t > 0 ,  

then 

Proo~ 

an _< 

The inequality (2.2) implies 

.v/20(n + 1)" 

1 1 1 1 
- -  ) - - ( l + O a  2 1) + O a n - 1 ,  
an - an - l (1  0a2_1) > - - -  

- -  an-1 an-1 

hence 

1 1 1 n - 1  

a--~ > ~-2T-- + 2 8 + 8 2 a 2 - 1  > a--~o + 20n + O2 E a2 > 20(n+ 1). 
an--1 i=0  

Thus, instead of (1.2.10), we have to prove 

(2.3) 

Definition 2.4: 

bers. Put 

Let A > O, 

[[R', J l l  = < IIR, ~112 2 
(1 + IP01)d2 IIR, ~116. 

Let S be the set of sequences a = {ak}kez of non-negative num- 

II~ll = ~ a  2. 

# > 0, A + # = 1. Introduce the linear operator b = L~,,(~) in S by 

b2n = Aa2n + v / ~ a 2 n - 1 ,  b2n+l = ~ta2n+l + x / ~ a 2 n ,  n 6 Z. 

By L we denote the operator L1/2,1/2. 

PROPOSITION 2.5: Let  

0 <  E a n = 7 < o o ,  b = Lx,~(~). 
nCZ 

Then for A = # = 1/2 we have 

(2 .6)  1 6 
ll~ll 2 < II~ll 2 - 2 - - ~ l l ~ l l ,  
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and for A # # we have 

(2.7) Ilbll 2 _< Ilnll 2 a ( ~ ' )  II~ll 6, 

where a(A, #) is defined in Theorem 0.8. 
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Proo~ 

proof  of (2 .6) .  Consider the functions 

f ( r )  = ~ anq n, 
nEZ 

q = exp(2~iT),  

Pu t  

Since (2.6), (2.7) are homogeneous, we can put  7 = 1. We star t  with the 

~0 
1 

I l f l l  ~ = If(r)12dr, 

Then  (2.6) is equivalent to 

It is easy to show tha t  

b n ~(~) = Z ~q ' 
nEZ 

• [0; 11. 

~o 1 Ilgll 2 = Ig(T)12dT. 

1 JI~H: <_ Ilfl} 2 - ~llftl 6. 

l + q  
g(~-) = f ( r ) .  2 

Since 7 = f (1 )  = 1, then 

5--- ltfll 2<_ 1, I f ( r ) l  <_ 1, T • [0; 1], 

and since [1 + ql2/4 = cos 2 7rr is an even function tha t  decreases in [0; 1/2], we 

can apply Steffensen's inequali ty (see [BB, Theorem 32]), which says tha t  

(2.8) m ( t ) n ( t ) d t  <_ n(t)dt ,  c - -  m( t )d t ,  ~,a 
where 0 ~_ re(t)  <_ 1, n( t )  >_ O, n ' ( t )  < O, t C [a; b]. Thus we obtain 

fl/2 [5/2 
Ilgll 2 = J-112 I f (~-) l  2 c o s  2 7 r T d T  _< 2 ,/0 COS a ~'7"dT 

= 5 - 535 - (sin 7r5)/~ 
253 ~ 5 - 5 3. 

Now we prove (2.7). To any ~ E $ we assign the vector-function 

?(T)  = (f0(T), f1(7")), 
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fo(T) = Z a2kq2k' fl(T) ---- Z a2k+lqzk+l' 
kEZ kEZ 

q = exp(2:riT), T • [0; 1]. 

Put  /o1 1[7112 = (Ifo(r)l 2 + I.h(rI2)dr. 

Isr. J. Math. 

(2 .9 )  

Since 7 = fo(1) + fx(1) = 1, then 

(2.10) ,~ -- II]112 _< 1, [f6(r)l 2 + [ f l ( r ) l  2 < 1, 

Therefore 

Ig0(T)I 2 + ]ga(T)l 2 ~ ~(T)(Ifo(T)[ 2 + Ifl(T)12), 

f l /4 
117112 _< 2 , ]  0 ~(~-)(Ifo(~)l 2 + Ifl(r)12)dr. 

e [0; 1]. 

Obviously, ~(T) decreases in [0; 1/4]. Hence due to Steffensen's inequality (2.8) 

and (2.9), (2.10) we get 

(2.11) ]lgll2 -< 4 [~/4ao ~(T)dr = 6 - 2 fjo_ ~/4 ( -  ~ / 1 1  -- 16A2#2 sin2 2~r~-) dr. 

Let us show that the function 

2~-3~O6/4(1--~/1--16A2p2sin22~rr) dT 

Let y(v) = (gO(T), gl(T)) be assigned to b = L~,~(a). Then (2.7) is equivalent to 

II~lf 2 < lYll 2 - ~(~,  ~ ) .  Ir]ll 6. 

It is easy to see that y can be obtained from ] by multiplication by the matrix 

M =  v/~-fiq 

Now we observe that the maximal eigenvalue of the matrix MM is equal to 

1 + V/1 - 16A2# 2 sin u 2~rT 
~(~-) = 2 



Vol. 90, 1995 S U P E R - H I G H - F R E Q U E N C Y  O S C I L L A T I O N S  209 

is decreasing in 6. Indeed, this follows from 

(2fo6/4(1-k/1-16A2#2sin227rT) d~- ) '= l (1 -~ l -16A2#2s in2~52)  

1 (1 - i l  - sin2 ~ )  = sin2 7r6 < 362 (63)  t . <~ -~_ = 

Hence 

26-3fo~/4(1-~/1-16A2p2sin22?rT) d.r 

< 2 1 - ~/1 - 16A2p 2 sin 2 21r~- dr  ---- a(A, #), 
d0 

and hence (2.11) yields 

11711 ~ 6 - ~(~ ,  ~)63 

PROPOSITION 2.12: 

and 
Let { 6k } , k C K:, {~/k},k E ]C, be sets of positive numbers, 

Z6~=~<~, ~ = ~ < ~ .  

Then 
~3 53 

kEK. 

Proof: Due to homogeneity we can assume 6 = ~/= 1, hence 6k _> ~k for at least 

one k, which implies the required inequality. 

PROPOSITION 2.13: Under the conditions of Proposition 2.5, we have for A = 

= 1 /2  

( 2 . 1 4 )  ) - - ~ ( a n  --  a n - l )  2 : 4(I]al l  2 - -  1l~ll2), 
nEZ 

(2.15) ~ a~ +2 ~ 4~S(ll~ll 2 -IINII2), s ~ 2. 
nEZ 

Remark 2.16: Proof of inequality (2.15) for s = 2 was suggested to me by Prof. 

V. Matsaev. I would like to express my gratitude to V. Matsaev for his help and 

kind permission to present his proof here. | 
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Proo f  o f  Proposit ion 2.13: Formula (2.14) is trivial. Inequalities (2.15) with 

s > 2 follow from the same inequality with s = 2. Now consider the following 

simple inequality: 

la3/2 3 / ~ ,  - ~ , - l l  < l a ~ -  an-ll(v/-~n -I- ~ ) .  

This implies 

2maxa3/2 < ~ 1a3/2 3 / ,  - - . _ ,  < ~--~ l a . -  a.-ll(v6Z~ + ~ )  nEZ -- 
nEZ nEZ 

V n E Z  nEZ -- ~ n E Z  nEZ 

and, finally, 

E a ~  < maxa 3- E a ~  < E ( a ~ - a ~ _ l )  2. ( E a ~ ) 2 '  --  nEZ 
nEZ nE 7L nEZ nEZ 

which is equivalent to (2.15) for s = 2. 

PROPOSITION 2.17: Under the conditions o f  Proposit ion 2.5, we have for A < # 

(2.18) E ( A(x/-fia2n - v /"~a2n-1)2  4- # ( v / - ~ a 2 n + l -  v ~ a 2 n )  2) = II~ll 2 - I I ~ l l  2, 
nEZ 

s/2_ s 
"~ - 2  (2.19) A.~'~'-'~aS+2~ - < ~ ( l l a l l  -Ilbll2), s _> 2. 

nEZ 

Proof: Formula (2.18) can be derived by an elementary computation. Inequality 

(2.19) is a consequence of (2.18) and (2.15). 

3. The  case F = P0 

Consider the equation 

(3.1) ~:(t) = - s i g n x ( t - 1 ) + P o ,  P0 E (-1,1).  

It is autonomouS, hence the operators/:k and the sets Hk(R, v) do not depend on 

k. So, we write L instead of £k, and H(R, v) instead of IIk(R, v) in this section. 

As the first step we state 
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PROPOSITION 3.2: Any  (R, u) • Tt, (R', u') • II(R, , )  satisfy 

t ic(n, ~)ll > lIR', I l l .  

Proof: Let (R', u') belong to II(R, u), and let the function x(t) • C[(~; ~] satisfy 

2(t) = -u ' ( t )  +P0, signx(t) = v(t), t • [a;~]. 

For any component (t'; t") of the set [a; ~] \ R' define a(t ' ,  t") to be the rectangle 

in the plane (t, x) formed by the lines 

t = t ' ,  t = t " ,  x = x ( t ' ) ,  x = x ( t " ) .  

Evidently, a(t t, t n) contains a linear segment of the graph of x(t) as a diagonal. 

Denote 

~(R' , . ' )  = [_J ~(t', t"), 
( i f ; t " )  

where (t'; t") runs through all components of the set [a; fi] - R'. It is easy to see 

that the area of a(t ~, t") is equal to 

A(t" - t') 2, u'lt';t") = -1 ,  

S(a( t ' , t" ) )  = p ( t " - t ' )  2, u'](t,;t,,) = 1, 

hence ]]R', u']] 2 is equal to the area of a(R' ,  u'). 

Let us show that 

(3.3) a (n ' ,  u') C a(E(R,  ,)) .  

Fix a component (tl; t2) of the set [c~; ~] \ R. By definition, the graph of the 

function y(t) satisfying 

~l(t) = - £ ( u ) ( t )  + po, signy(t) = u(t), t e ( t l ; t2 ) ,  

consists of two segments. It is easy to see that the graph of x(t) on (Q; t2) is 

contained in the triangle bounded by the t-axis and by the graph of y(t). This 

immediately implies (3.3), and thereby completes the proof. | 

For an element (R, , )  • T~, let us define 

! I! 

HR' "Ill = ~ / - f iE  ak + v / A E  ak, 

where ~ '  (resp. ~--~/') is taken over the lengths of all connected components of 

In; ~ ] -  R with u = 1 (resp. v = -1) .  
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PROPOSITION 3.4: I f  po = 0 then 

(3.5) 
1 

IIE(R,v)II 2 < IIR, vll 2 2)iR, vll411R, v[16" 

I f  po # 0 then 

(3.6) 

Proof: 

~(A, , )  R lIE(R, v)ll ~ < IIR,-It ~ - I ~ , ~ ] ~  , vl?. 

STEP 1: Assume that P0 = 0 and R is locally finite in (a ;~) .  Then, start- 

ing with any component of  the set (a; ~ ) \  R, we can successively renumber 

the lengths {ak}kez of all components of (a;/3) \ R in the following way. Let 

(t ; t ' ) ,  ( t ' ; t")  be neighbouring components of (a;/3) - R, and t '  - t = a~. If 

v changes its sign at t' then put  t" - t' = a~+l, if not then put a~+l = 0, 

t" - t '  = a~+2. Now we observe that the action of E on (R, v) corresponds to the 

action of the operator L on {ak}keZ, and 

IIL(~)II ~ ak 
IIR, vii - tl~ll liE(R, v)ll - - -  IIR, vii1 - v ~ '  ~ '  v ~ '  

hence (3.5) follows from (2.6). 

STEP 2: Assume that Po = 0, and R is not locally finite in (a;/3). For any 

component (tl; t2) of the set (a;/3) \ P(R)  (see Definition 1.2.2) the intersection 

R' of R with (tl; t2) is locally finite, hence by Step 1 

1 
FiL(R',v)ii 2 <  iIn',~ii 2 2iiR,,~li~iiR',~ii~. 

Summing up over all components of the set ( a ; f l ) \ P ( R ) ,  we derive, by 

Proposition 2.12: 

liE(R, v)il 2 = Z ilL(R', ~)ri 2 < ~ ilR', ~ii ~ - Z IIR', vii ~ 
- 211R,,uO] ~ 

< ~ liR', vif ~ - ( E  Ilr', vii2) 3 = iIR, vii ~ ItR, vii ~ 
- 2 ( E  aiR', vii ,)  4 2aIR, ull ~" 

STEP 3: Assume that Po # 0. If R is locally finite in (a;/3), then we renumber 

the lengths {ak} of all components of the complement of R in (a; ~) as described 
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in the first step, and so tha t  components  with positive u have even numbers.  

Then  we define the sequence ~ = {a~} C S by 

a~k = v/-fia2k, a~k+l = x/~a2k+l, k • Z, 

and, in a similar way, show tha t  (3.6) is equivalent to inequality (2.7) applied to 

g'. Finally, the case of a general set R is reduced to the locally finite case as it 

was done in the second step. | 

Finally, we see tha t  

IIR,  111 > 1 -21Pol IIR, ~11~, 

and hence (3.5), (3.6) imply (2.3) with d2 given by Theorem 0.8. 

4. T h e  ca se  F ~ const 

Consider the equation 

k(t)  = - s ignx( t  - 1) + Po + x ( t ) f ( x ( t ) , t )  (4.1) 

where 

(4.2) f ( x , t )  e C1(~2), Ipo+x f ( x , t ) l  < p <  1. 

PROPOSITION 4.3: Under condition (4.2) there exists a coordinate change in the 

plane T(t ,  x) = (v, O) of the type 

S o = x + t),  
(4.4) 

r = t + x2~(x , t ) ,  

tha t  transforms the trajectories of the equations 

(4.5) ~ =  - l  + po + x f ( x , t ) ,  gc= l + po + x f ( x , t ) ,  

into straight  lines 

Proof: Pu t  

dO = ( - 1  +po)dT, dO = (1 +po)dr. 

(4 .6 )  (1 + po)kO - (I) = ~, ( - 1  + P o ) ~  - (I) = r/. 
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Then the conditions on T can be written down as 

( f  + x ( - 2 ~ f  - ~t) + (1 + Po)~x + x f~x  
2 + 2po 

(4.7) 

f + x ( - 2 n f  - Or) + ( -1  + Po)nx + z fn~  rl= 
- 2  + 2po 

The characteristic lines of these equations are just the trajectories of equations 

(4.5), and hence, according to (4.2), equations (4.7) are solvable in the plane with 

initial data 

f (O, t )  ~ / l~=o  f (O, t )  
(4.8) ~lx=o - 2 + 2po' - - 2  + 2p0" 

This completes the proof. II 

From (4.4) we immediately obtain the formulae for T - l :  

(4.9) [ t = w + O 2 r ( O , T  ) s, r G  C 1(R2). 

Let x(t) be a solution of (4.1). The diffeomorphism T takes x(t) to a piecewise 

linear function 0(r) with 

0(7-) = { 1 + po, ~(t) > o, 
- 1  +p0,  2(t) < 0. 

Now we observe that,  according to (4.4), (4.7) and (4.8), the following holds on 

the line/9 = 0: (10 x = O, t = 7-, D(0, 7-) 

In particular, this means that x(t) and 0(7-) have the same set of zeroes, and 

sign O(r) = sign x(t).  

Combining all these observations, we obtain that 0(T) satisfies the equation 

(4.10) d(7-) = - sign0(~- - 1 + 0(7)2r(0(7-), "1-)) -4- Po. 

Now we can describe the shift operator £k for equation (4.1) via the shift 

operator of equation (4.10). Namely, for any (R, u) E ~ we can construct, as 
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described in Lemma 1.2.3, the set IIk(R, v) and the element £k(R,  v) C IIk(R, v) 

for equation (4.1), and the set II(R, ~) and the element £(R,  v) C II(R, v) for 

equation (3.1). Due to the equivalence of (4.1) and (4.10), we have the bijective 

mapping 

M: II(R, , )  , IIk(R, v), 

To an element (R ~, v') C II(R, v) we assign the function which acts as follows. 

x(t) satisfying 

i ( t )  = - . ' ( t )  + p0, 

signx(t) = u(t), t C [o~;/3], 

and then we set M(R ' ,  u ~) to be equal to the image of (R', u') under the homeo- 

morphism 

t C [c~;/3] ~ 7 = t + x2(t)q2(x(t), t + k) C [c~;/3]. 

Obviously, 

(4.11) M ( £ ( R ,  ~)) = £k(R,  v). 

PROPOSITION 4.12: For any (R'~') E Ilk(R, u), 

II£k( R, ")li > ]i R', u']l" 

The proof coincides with that of Proposition 3.2. 

Assume that 

(4.13) sup I~(0; t)l < 5, sup I~t(O; t)] <_ St, sup I ~ ( x ,  t)l _< 5,, 
t t tEfi¢ 

Ixl_<(1-p])/2 

where 5, 6t, 5x E R. Denote by W the set of polynomials 

E il i2 i3 

il +i~+ia>O 

where ~ili2i3 (A, P) are rational functions of A, p with only positive coefficients. 

PROPOSITION 4.14: There exists a polynomial w G W with the property: i f  

w0 = w ( & ~ x , S t , ~ , ~ )  < 1, 

then 



2 1 6  E .  S H U S T I N  I s r .  J .  M a t h .  

(1) forpo=O, k > l ,  (R,u) ET~ 

IIZ:k(R,v)ll 2 < [IR, u[[ 2 1 - -  W 0 

21In, '~1I~ IIR,.~II ~ ; 

we thus obtain 

b~2,~ ~(0) 4A2p3/2a'22 qd(2Ax/-fia,2~, t2~ + k) = ~2n "~ 
i _ I _ - 4A#a5/2a'22 lq2(-2x/~tta2n 1, t2~-1 + k), 

b~=+ 1 h(o) ' , = V2nA. 1 -J- 4 ) ~ 3 1 2 t t 2 a 2 2 n + 1 k ~ ( - - 2 V f - ~ p a 2 n + l ,  t 2 n + l  -4- k )  

t ! 
- 4A5/2#a22n~(2Ax/~a2~, t2n + k), 

(2) forpo > 0, k > 1,(R,v)  e R  

IIZ:k(R, v)H2 _< I]R, .it2 _ ( t-]IR, "-~ Wo)a(A, ~) ]IR, .116 

Proof: As explained in the proof of Proposition 3.4, according to Proposition 

2.12, it is sufficient to study the ease of a locally finite set RN (a;/3). Let {an}nez 

be the lengths of naturally ordered connected components of [a; ~] \ R. Then 

the lengths {bn}ne~. of connected components of [a;/3] \ £k(R) can be expressed 

by means of (4.11) as 

b2,~ --A(a2,~ + a2,,-1) + 4A2p2a22nkt'(2Apa2n, t2n + k) 

- 4A2#2a2n_l~(-2Atta2,~-l, t2,~-1 + k), 

b2n+l =p(a2,~+l + a2n) + 4A2p2a~n+lq2(-2Apa2,~+z, t2,~+1 + k) 

- 4A2p2a2,~(2A#a2n, t2n + k), 

t 2 ~ = E a ~ + A a 2 n ,  t2,~+1= E a~+tta2n+l,  n E Z .  
i <2n  i < 2 n + 1  

In what follows we use sequences {a~}, {b~}: 

a ~  a 2 n v ~ ,  ' = a 2 n + l V / - ~ ,  = a 2 n + l  

bl2n = b2nv/~, b2,~+ 1 '  = b2,~+lx/A, n E Z. 

Let us introduce the notation ~(o) = L~,,(~'), so that 

! ! . 
v2n/~(°) = Aa~ + v /~a2~_l ,  ~(0) = V/-~al2,~ + #a2n+l, t ' 2nA-1  
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b2~ < b~ °) + 4$p3/2(Aa~ ' , ' _ --  # a 2 2 _ 1 ) ~ ( 0 ;  t2n -4- ]~) 

+ 4~3,a~3~(2,~, + 62) + 4A~/2S/~a'~_l(2~61 + ~2), 
i t ! 

--  V2n+l  

' 7/2 1/2 '2 + 4A#3a'~n+1(2A51 + (~2) + 4A # a2~(2P51 + ~2).  

where 

t ' t= E a i ,  
i<l 

Now elementary computations yield 

/ E Z .  

,6 3/2 3/2 

nEZ 

217 

(4.15) 
nEZ nEZ nEZ 

where w4, ws, w6 C l/Y and 

i / P2 i A. =(v%~n + v~a~n_l)(Aa2n - , a '~_ , )~(O,  t2~ + k) 
, , ,2 Aa~2)q~(O, ' + k)). -4- (V/ -~a2n+l  A- v~a2n)(#a2n+l -- t 2 n + l  

Each term in the latter formula can be transformed as follows: 

, ,2 ,2 3~7¥_#  3 p  - )~ ,3 
(v/Aa='~ + v/-fia2'~-l)(Aa2" - tta2'~-l) -- o r ^  a23 3 , ~  a2" - I  

( , _3A+Pa,2n_l)(V/_fia2 _ , ~2 A 2 - 3it + p2 
3v/-~. Aa2~ 3AVr fi v/Aa2~-l] . + 

Therefore, the last sum in (4.15) can be bounded from above by 

E (  , 2 8)k3/2#3/2~P( a, #)IIR, viii v/-fia;= - v~a2~_l) 
n E Z \  

\ 

+ #(v/-Aa'2=+l - v/-fia'2~) 2) (4.16) 
] 

[ t3)~ - #1a,4 13~_--_~1a,4 +8 3/2" 3/26t Z \ + 
nEZ 

where p(A, #) is a rational function of A, #. Finally, combining (4.15), (4.16), 

(2.18) and (2.19), we obtain 

II~'lr 2 < II~(°)ll 2 + ~ .  (ll~'ll ~ - 11~(°)ll2), ~ e w ,  
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hence, by (2.6), (2.7), 

I)~'ll 2 < Ila'll ~ - (1 - ,~)(l la' l l  2 - II~<°)ll 2) 

- (1 @ ) o ( A , , ) I I ~  I I~/l l~ IlL 
if P0 -- 0, 

if P0 > 0. | 

The final step in the proof of Theorem 0.5 is 

PROPOSITION 4.17: Let w E W be a polynomial of Proposition 4.14. For any 

continuous positive functions 5 = 5(po), 6~ = 5x(po), 5t = 6t(Po) satisfying 

inequality w(6, 6x, St, A, #) < 1, there exists a continuous positive function dl(po) 

with the property: i f  

max{i f (x , t ) ] ,  Ifx(x,t)], i f t(x,t)}} <_ dl(po), 

then ~(x,  t) satisfies (4.13). 

Proof." The statement  can be easily deduced from (4.6), (4.7), (4.8). 
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